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Abstract

This paper proposes a methodology to detect the location and extent of damage in mechanical systems using forced

response data. A residual vector defined from vibration response and modeled system matrices forms the objective function

of the optimization problem. The residual elements are expressed in terms of unknown stiffness-reduction factors and

known Fourier coefficients. Generally, Fourier transform of homogeneous response has peaks at the natural frequencies

with amplitudes as real and imaginary coefficients. Stiffness reduction factors are arrived by solving optimization problem

using genetic algorithms (GAs) with tournament selection strategy. It is shown that the methodology can be applied to a

system of any degree of freedom. Two examples are illustrated to obtain the stiffness reduction factors. The results are

shown in the form of tables and graphs.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The damage detection is an important requirement for high-speed machines and structures. It is strongly
necessary to detect damage at an early stage to avoid catastrophic failure. When there is damage in the form of
crack in a rotor, it reduces stiffness of the structure and hence reducing the natural frequencies. Some times the
vibration signature can also be used to predict the presence and location of the damage. Rotating machinery
produces vibration signatures depending upon the mechanism. A faulty motor, bearing, gearbox, fan and
any electrical or mechanical component may produce strong harmonics and side bands, which are to be
distinguished from other frequency contents. Thus, vibration signature is sensitive to the type and intensity of
damage.

Many methods have been presented for detection of damage in rotors. Detection of crack for non-rotating
structure is an ideal problem, where a structure is stopped and checked for damage. Due to rotation, instead of
a stationary member the second and higher harmonics of rotational frequency influence the resulting vibration
signature. The amplitudes of these harmonics can be measurable only if the frequency of one of the harmonics
closely matches any of the natural frequencies. This signature analysis, however predicts the presence of
damage, but the location of damage is not an easy task. Many authors studied identification of damage
parameters using the response characteristics of a system, in terms of residual vector defined from the model
ee front matter r 2007 Elsevier Ltd. All rights reserved.

v.2007.02.011

ing author.

ess: jsrinivas1in@yahoo.com (J. Srinivas).

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2007.02.011
mailto:jsrinivas1in@yahoo.com


ARTICLE IN PRESS
J. Srinivas et al. / Journal of Sound and Vibration 303 (2007) 909–917910
and measured data. Ratan et al. [1] employed a residual vector based on frequency response coefficients to
determine the location and extent of crack in a rotor system. Here, the non-zero residual elements indicate the
crack location. Baruh and Ratan [2] defined the concept of residue and its application for detecting and
locating cracks in a truss structure. Mannan and Richardson [3] described the vibration as a sensitive indicator
of physical integrity of a mechanical system. Here, the structural fault is detected and located from the changes
in measured frequency response function. Sekar et al. [4] employed mechanical impedance approach for
detection and monitoring of slant cracks in rotors. Srinivas et al. [5] presented an optimization approach using
genetic algorithms (GAs) for obtaining the location and extent of damage using the transient vibration
response. Rao et al. [6] illustrated the use of variation in the natural frequencies and mode shapes for detection
and location of damage.

Present paper introduces the concept of residual force formed from Fourier coefficients of response and
system matrices. To authors knowledge, this has not been attempted in literature. Fourier transform of the
homogeneous response of a system is taken. The coefficients are collected at all the nodes for every natural
frequency. Natural frequencies and corresponding Fourier coefficients finally form the residual vector in terms
of unknown stiffness reduction factors. This vector is minimized for obtaining state of damage in terms of
optimal stiffness reduction factors. Thus the approach identifies location and extent of the damage within the
system. Methodology is illustrated with two examples: one for a single degree of freedom vehicle model and
other for a double disk cracked rotor system. The next section describes the detailed procedure of the residual
vector formulation.

2. Mathematical formulation

The equations of the motion of a mechanical system having n degrees of freedom are obtained by
assembling the mass, stiffness and damping matrices along with position and force vector associated with
every element of the system. It can be written as

M €XðtÞ þ C _XðtÞ þ KXðtÞ ¼ F, (1)

where X(t) is displacement vector containing nodal displacements associated with the end points of the
elements and F denotes the vector of external excitations. The vibration response of a system usually contains
a homogeneous part and particular integral due to the vector F. In Fourier transform of time–response of a
system, the peaks are observed at natural frequencies. By noting the peak values in Fourier Transform of the
response it is possible to determine the mode shapes also. The homogeneous response is obtained as a solution
of free vibration problem with F ¼ 0 in Eq. (1) as follows:

Xh ¼
X2n

i¼1

aibie
li t ¼

Xn

i¼1

faiBie
jli t þ āiB̄ie

�jli tg, (2)

where ai, ai and āi are constants associated with initial conditions.
The 2n complex eigenvalues l and the corresponding eigenvectors B (Bi and its complex conjugate B̄i) are

obtained by solving

fK� l2i Mþ jliCgBi ¼ 0 where i ¼ 1; 2; 3; . . . ; n (3a)

and

fK� l2i M� jliCgB̄i ¼ 0 where i ¼ 1; 2; 3; . . . ; n. (3b)

That is

0 I

�K 0

� �
� l

I 0

C M

� �� �
B ¼ 0. (4)

If eigenvalues are real and positive then eigenvectors can be expressed as Bi ¼ (ri+jsi). The real and
imaginary portions of X independently satisfy Eq. (1), as the matrices M, C and K are real. This means the
actual response is a linear combination of real and imaginary parts of Xh, namely (ri cos lit�si sin lit) and



ARTICLE IN PRESS
J. Srinivas et al. / Journal of Sound and Vibration 303 (2007) 909–917 911
(ri sin lit�si coslit). Thus, Xh can be now written as

Xh ¼
Xn

i¼1

½ci cos litþ di sin lit�, (5)

where ci ¼ ri+bisi, and di ¼ ri�bisi for i ¼ 1,2,y,n with bi as the constants depending on the initial conditions
of the system. Here, ci and di are real and imaginary components of vibration amplitudes at natural
frequencies in Fourier transform of homogeneous response. Thus ci and di are measured from the Fourier
transform of homogeneous solution. Now substituting, Xh in homogeneous equations of motion

Xn

i¼1

½ðK� l2i MÞci þ liCdi� cos litþ
Xn

i¼1

½ðK� l2i MÞdi � liCci� sin lit ¼ 0. (6)

Hence, the coefficients of cos lit and sin lit should separately equal to zero.
Thus, for i ¼ 1,2,3,y,n,

ðK� l2i MÞci þ liCdi ¼ 0, (7a)

ðK� l2i MÞdi þ liCci ¼ 0. (7b)

Except at initial stages, the right-hand sides of above equations may not always be zero due to an inherent
damage in the system. The non-zero right-hand side elements constitute the residual-vector. Thus, finally for
any problem the residual vector is defined simply by considering one of the Eq. (7) as

Ri ¼ ðKd � l2i MÞci þ liCdi, (8)

Here, Kd is the overall damaged stiffness matrix having damage in all or some of m elements, which is
described in terms of original elemental stiffness matrices K(p) and the elemental reduction factors gp of
element ‘p’ according to the relation

Kd ¼
Xm

p¼1

KðpÞgp. (9)

The residual vector is thus defined for each natural frequency, indicating the use of more than one residual
vector for correct assessment of damage.

3. Genetic algorithms

Optimization of nonlinear programming problems is a continuously challenging issue. Especially, the
problems involving non-unique solutions are seeking the help of non-conventional optimization techniques.
GAs represent a popular approach to stochastic optimization, especially as relates to the global optimization
problem of finding the best solution among multiple local minima. GAs represent a special case of the more
general class of evolutionary computation algorithms (which also includes methods such as evolutionary
programming and evolution strategies). The GAs applies when the elements are real-, discrete-, or complex-
valued. As indicating from the name, the GAs is based loosely on principles of natural evolution and survival
of the fittest. In fact, in GA terminology, an equivalent maximization criterion is often referred to as the fitness
function to emphasize the evolutionary concept of the fittest of a species. The steps of a basic form of the GAs
are given below. These steps are general enough to govern many implementations of GAs. Performance of a
GAs typically depends greatly on the implementation details, just as with other stochastic optimization
algorithms.

Step 0 (initialization): Randomly generate an initial population of N chromosomes and evaluate the fitness
function for each of the chromosomes.

Step 1 (parent selection): Set Ne ¼ 0, if elitism strategy is not used; 0oNeoN otherwise. Select with
replacement (N�Ne) parents from the full population. The parents are selected according to their fitness, with
those chromosomes having a higher fitness value being selected more often.
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Step 2 (crossover): For each pair of parents identified in step 1, perform crossover on the parents at a
randomly (perhaps uniformly) chosen splice point (or points if using multipoint crossover) with probability pc.
If no crossover takes place, then form two offspring that are exact copies (clones) of the two parents.

Step 3 (replacement and mutation): While retaining the Ne best chromosomes from the previous generation,
replace the remaining (N�Ne) chromosomes with the current population of offspring from Step 2. For the bit-
based implementations, mutate the individual bits with probability pm; for real coded implementations, use an
alternative form of ‘‘small’’ modification (in either case, one has the option of choosing whether to make the
Ne elitist chromosomes candidates for mutation).

Step 4 (fitness and end test): Compute the fitness values for the new population of N chromosomes.
Terminate the algorithm if the stopping criterion is met or if the budget of fitness function evaluations is
exhausted; else return to Step 1.

In tournament selection approach, ‘n’ individuals are selected at random and the fittest is sorted out. Here,
the element of population is chosen for passing into next generation if it is better (has better fitness value) than
several randomly selected opponents. Tournament size is selection parameter. Tournament selection differs
from explicitly ranking schemes in that it doesn’t need to sort population during its work. Tournament
selection allows parallel execution during choosing members of new generation. It is, just like ranking
schemes, invariant to translation (adding same value to the fitness of all item in population) and scaling
(multiplying fitness of all items in population with some value). More details of GA can be found in open
literature [7]. Fig. 1 shows the flowchart of the present methodology using GA.
4. Results and discussions

The methodology is illustrated with two examples, where the stiffness variation influences the response
behavior considerably. The first example is a model of a vehicle traveling over a bumpy road surface as shown
in Fig. 2. It is assumed that the vehicle vibrates only in the vertical direction, the stiffness and damping effects
of the tire are neglected and tire has good traction and never leaves the road surface.

The equation of motion of this system is

m €yþ Cð _y� _zÞ þ kðy� zÞ ¼ 0. (10)

Supposing that it travels at a constant speed v, the road roughness can be approximated by a sinusoid
defined by

z ¼ Z sin
2px

L
¼ Z sin ot, (11)

where o ¼ (2pv/L) is angular velocity of harmonic motion.
The equation of harmonic moving base system now becomes

m €yþ C _yþ ky ¼ CoZ cos otþ kZ sin ot. (12)

The solution contains homogeneous part and particular function due to cosine and sine components. With a
simulated vehicle mass of m ¼ 1000 kg, spring stiffness of k ¼ 100 kNm�1 and a damping ratio of 0.1, the
Fourier Transform of response for various conditions of damage is shown in the Fig. 3. The Fourier
coefficients corresponding to real and imaginary components cj and dj are listed in the Table 1. GAs with a
population size of 20, crossover probability of 0.98 and mutation probability of 0.01 is selected with this one-
dimensional minimization problem. Residual vector norm is taken as the objective function of test run. The
identified values of stiffness reduction factors g ¼ 0.289 and 0.701, respectively for the two damaged cases are
found to be close to the assumed values for generation of response.

Second example is a simply supported rotating shaft carrying two disks mounted on elastic supports at two
ends. In this system, it is required to find the location and extent of damage from the response information and
system matrices. Prediction of crack in a rotor is an important topic of research, where the crack opens and
closes (breathed) during the rotor rotation. More recently, many authors [8–13] suggested various crack
prediction methods. Only the linear open crack model is considered in this paper.



ARTICLE IN PRESS

Start 

Set i=1, Select the system, Discretize by 
solving the numbers of elements 

if i = 1

Formulate Stiffness (K), Mass (M),

Damping (C) Matrices 

Solve the eigenvalue problem of damped 

system

Write down the force vector F

Obtain the discrete response Fourier 
coefficients cj and dj at all nodes. Draw 

the Fourier transform of response 

Modify stiffness matrix by
introducing known 
reduction factors  

γassumed
Yes

No 

Compute the residue in terms of unknown stiffness reduction 
factor γp

assumed (p=1,2,..), according to 
Rj = (Kd-Mωnj

2) cj + ωnjC dj

where Kd = γpK(p), p=1,2,… 
cj and dj are Fourier coefficients at a mode j. 

Minimize the norm of vector R using 

Genetic Algorithms

Compare 
 γp

output and  γp
assumed 

Stop 

i= i+1

Fig. 1. Detailed flowchart of the approach.
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In this formulation, the gyroscopic matrix due to disk rotation is only considered. The entire section is
discritized into three unsymmetrical 8-noded beam elements. Element stiffness, mass, gyroscopic matrices are
assembled with a code developed in C-language. This program permits to introduce damage in any element
in terms of stiffness reductions. Dynamic condensation is employed to reduce size of overall matrices by



ARTICLE IN PRESS

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

a
m

p
lit

u
d
e
 r

a
ti
o

no damage
30% damage
60% damage

frequency in rad/s

Fig. 3. Fourier transform of the response.
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Fig. 2. Vehicle model on a road surface.

Table 1

Fourier coefficients at a natural frequency (i)

Undamaged system on ¼ 9.9499 rad s�1 30% damaged system with

on ¼ 8.3247 rad s�1
60% damaged system with

on ¼ 6.2929 rad s�1

ci di ci di ci di

�0.4949 0.0705 �0.5048 0.0719 �0.5147 0.0733
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eliminating rotational degrees of freedom. The first-order form of eigenvalue problem is solved to obtain the
eigenvalues which are all found to be real. The unbalance response of disk is obtained to check the natural
frequencies of the system. This rotating beam carrying disks is a harmonically excited n degree of freedom
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system. So the excitation vector F is given by

F ¼ g sinotþ h cos ot, (13)

which is usually an imbalance force due to rotor eccentricity. The sub-vectors g and h are represented by

g ¼ h ¼ ½ 0 0 m1x1o2 m1y1o
2 m2x2o2 m2y2o

2 0 0 �0. (14)

Here, m1 and m2 are disk masses and (x1, y1) and (x2, y2) are their coordinates of center of gravity,
respectively. The solution can be obtained as a sum of complementary function and particular integral. The
particular integral takes the form

Xp ¼ p cos otþ q sin ot. (15)

Thus, vectors p and q are obtained by solving

K� o2M oC

�oC K� o2M

" #
p

q

( )
¼

h

g

( )
. (16)

Here o is frequency. On the other hand, complementary function depends on arbitrary combination of 2n

linearly independent functions of the homogeneous problem. Response is obtained in time domain and
discrete Fourier transforms are taken over a frequency range to obtain Fourier coefficients at the natural
frequencies. Only first natural frequency is considered in the present problem. The three-element rotor system
considered in present work is shown in Fig. 4. Properties considered for simulation [1] are shown in Table 2.
The material of the rotor shafts has a modulus of elasticity of E ¼ 2.1� 1011 Pa and density r ¼ 7806 kgm�3.
The natural frequencies of the original system and the system with a small damage introduced in third element
of the shaft with a reduction factor g ¼ 0.4 are obtained separately and are listed in the Table 3. The Fourier
transform of the original response is obtained from MATLAB program and is shown in Fig. 5. It can be seen
that the first two modes of the system having peak amplitudes coinciding with those shown in Table 3. The
simulated experimental data of a beam with damage in third element is also generated along with undamaged
original information. Corresponding Fourier coefficients at first natural frequency along all the nodes are
recorded. Residue at the first mode is formulated and objective function is defined in terms of stiffness
reduction factors. The problem is solved using GAs with a population size of 40 keeping crossover and
Node 
1 

Node 
2 

Node
3 

Node
4 

Disc 1 Disc 2

Fig. 4. Three-element rotor system.

Table 2

Properties of rotor system under consideration

Rotor Disk

Property Section-1 Section-2 Section-3 Feature Disk-1 Disk-2

Diameter (mm) 12 15 20 Mass (m) (kg) 2.06 1.41

Length (mm) 50 120 100 Inertia (I)(kgm2) 2.91� 10�3 1.271� 10�3

Eccentricity (m) (�1.2� 10�4,0) (6.4� 10�4,0)
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Table 3

First four frequencies of 3-element rotor (rad s�1)

S. no. Undamaged Damaged (g3 ¼ 0.4)

1 784.67 735.18

2 838.77 792.34

3 2435.9 2229.4

4 2452.5 2242.9
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Fig. 5. Unbalance response amplitudes at node-2.
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mutation probabilities the same. Fig. 6 shows the training process in GAs. It took 30 s on a Pentium-IV
processor. The final output vector g is [0.03 0.051 0.389]0.

5. Conclusions

In this paper, an attempt has been made to identify the damage within a system using the available Fourier
transform of the response. The approach consists of formulating an objective function in terms of the element
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stiffness reduction factors using Fourier coefficients at the natural frequencies. Unlike conventional
formulation of residue from modal data, the present technique conveniently forms the objective from vector
of Fourier coefficients. This novelistic optimization problem was solved through binary coded GAs.
Robustness, accuracy and computational time of programs are very encouraging in this work. The
methodology can be extended to large-scale problems like vehicular driveline systems.
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